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Abstract

-~ A variational approach is outlined for the deduction of impurity

confinement scaling laws. Given the forms of the diffusive and convective

-

n
components to the impurity particle fl;;7<:wé"preééntﬁ.a variational
principle for the impurity confinement time in terms of the diffusion
time-scale and the convection parameter, which is a non-dimensional
measure of the size of the convective flux relative to the diffusive flux.
These results are very general and apply irrespective of whether the
transport fluxes are of theoretical or empirical origin. The impurity

confinement time scales exponentially with the convection parameter in
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1. INTRODUCTION

Experimental studies of trace impurity transport (HAWKES et al.
(1987), MARMAR et al. (1982) represent tvpical examples) provide a useful
way of probing tokamak plasmas. The present article is concerned with
certain general features of impurity confinement scaling. We consider a
cylindrical model of tokamak magnetic flux surfaces for simplicity. The
trace impurity number density nI(r,t) is assumed to satisfy the following

transport equation.

(r FI(r,t)) (1)

Lo B

0
dr

In practice, the impurities can exist in various ionization states with
different values cof zI. In principle, one must then solve a series of
coupled equations of the type of Eg.(1) with sources to model the
transitions. The theory presented in this paper is applicable to this
more general case also. However, it is best understood in terms of the

simple model provided by Eg.(1).

The impurity radial flux FI(r,t) is known (both empirically and

from neo-classical theory) to take the general form,

anI
FI(t,t) B DI(r)g:_ - UI(r)nI (2)

The diffusivity DI(r) and the (nominally) inward convection velocity




UI(r) are generally functions of plasma proverties, ZI etc but not of
n, or its derivatives. Many experimentalists adopt simple forms for
Di
them, e.g. D_ =D (a constant of order 1y, ) and U, =C —= r where
I L le I a
C is a non-dimensional number O0(1) aand fit the data to obtain empirical
values for DL and C . We have given a phenomenological theory (HAAS

and THYAGARAJA, 1987) relating D to the anomalous plasma (electron)

I
thermal diffusivity xle and UI to the Pfirsch-Schluter convection
velocity. The purgose of the piesent paper is to deduce the confinement
scaling law for Eg.(1), given functional forms for D and U

g q.(1), given fu I 1

profiles. The results are therefore very general and apply irrespective

of which theory (or even experiment) is used to obtain DI and UI.

2. MATHEMATICAL FORMULATION

The problem is posed thus: we assume that Equations (1) and (2)

apply together with the following conditions

—~
-
~
o
{11}

(]
-

DI(a) fD(r/a) ; fD(1) ED(r/a) > 0.

(2) U

UI(a) fU(r/a) i fU(O) 0, fU(1) =1
UI(a) > 0, fU(r/a) > 0.

(3) nI(a,t) = 0 and FI(O,t) =0

(4) nI(r,O) = Finitial(r)




The fi.st two conditions specify the nature of the transport
co~efficients. It is usually the case that the profile functionsg
fD(r/a), fu(t/a) are monotonic, increasing. Conditions (3) and (4) are
the boundary and initial conditions respectively. For experimental
applications, it is useful to regard Finitial(r) as a function

concentrated near r = a.

Given the above data, the initial value problem for Eq.(1) can be
solved numerically in general. 1In special cases, analytic solutions may
also be constructed in terms of known functions. To discuss the

properties of nI(r,t) we introduce two parameters.

a2
Let Taige ° (3)
D_(a)
1
a UI(a)
and <, 2 —_— (4)
DI(a)
Clearly Tdiff is a measure of the impurity confinement time (to be

defined precisely) in the absence of convection, while Ca is a
dimensionless measure of the convective flux relative to the diffusion
flux. Ca is usually referred to as the Peclet number in fluid mechanics
(JERRARD and McNEILL, 1986) though it is convenient for our purposes to
call it the convection parameter. From nI(r,t) we may form the line

average

ftey = [ ar & 5)




A plot of this (Fig. 1) shows a very sharp rise followed by a nearly
exponential decay in time. The experimental brightness function is
related to R(t), though not simply. However, the decay time 1, is a

imp
measure of the impurity confinement time.

From dimensional analysis, it is obvious that the following "scaling

law"” must hold.

/ = F(C)) (6)

Timp’ Taiff

Fig. 2 shows the results of a set of numerical solutions of Eg.(1) for

: . F
typical forms of fD, fU, Finitial over a range of Ca (Ca) can be

written (for C, > 0) F(C) = Acz exp[Bcf}. The constants A, B, a, B

depend only on £ £ and not on F It is noteworthy that

D' U initial.
F(Ca) is exponentially dependent on Ca whereas Eq.(1) has
co-efficients UI which only depend on Ca linearly. This is a direct

result of the cancellation between the diffusive and inward convective

fluxes.

3. ANALYTIC THEORY AND VARIATIONAL PRINCIPLE FOR THE SCALING FUNCTION

The above results can be understood gquite simply by the application

of the following theorem.

Theorem:

Consider the eigen-value problem defined by

-4 -




1
18 o, B ru o) =-ae (7)
r dr dr
. i dd
together with the boundary conditions, — =0 at r =0, &=0 at r

a. The eigen-values {A }Q form a real, positive, monotonically

n n=1

increasing unbounded sequence, ie, 0 < A} < A, < ... < An e

b. The corresponding eigenfunctions th may be written in the form

<I>n = p(r) Vn(r)

r UI(r)
where p(r) = exp{ - | dr} and v, satisfy
0 D.(r)
av
18 ¢ Dp —2) = - APV (8)
r dr dr

a
and are normalised by 1 = [ p(r)Vn2 rdr.
0
a
Clearly, 6 = f p{r)v V rdr holds.
mno o n m

¢. The solution to Eg.(1) is given by the eigenvalue expansion

At
n

np(r,t) = ng1 e A2 (r) (9)

@™
where Finitial(r) = nz1 An ik(r) (10)




a
with, A = [ F_ .V rdr (1)
n 0 initial n

-(n, t
d. As t * w, nI(r't) = e A (r) + o(e (NgmAy) H

and Tim .
p Ay

e. The eigen-value kl is given by the Rayleigh-Ritz principle

a

2
[ o 0 o) (&) rar
A = Min {0 dr } (12)
v(r) a
J pl(r) v2 rdar

0

Where the minimum is taken over real, continuocusly differentiable

functions s.t EX =0, r=0; V=20, r=a
dr

Proof:

ru
The substitution & I p(r)V with p(r) = exp{- | s ar} converts
0 D

I

{7) to the self-adjoint eigen-value problem (the boundary conditions are

unaffected)
ld—-(rDIpﬂ)=-ka (13)
r dr dr

av
~— =0 at r =0 and V=0 at r = a . The statements a, b, ¢, d
dr

-6 -




and e follow from the standard theory given in the well-known texts of

CODDINGTON and LEVINSON (1953) and CQURANT and HILBERT (1353).

We now apply the variational principle to deduce F(Ca) for an
experimentally interesting case. The_poinc of this application is this:
if we are only interested in F(Ca), and not in nI(r,t), we need not
solve either Eq.(1) or the eigenvalue problem. We simply take a suitable
trial function V and evaluate AL approximately by calculating the

Rayleigh-quotient

Thus, we take fD =1 and fU z (r/a). Putting x = r/a,
1 2
- 2 CaX
p =e .
1 2
1 = =C.x 2
av
f e 2 a (——) x dx
Min 0 dx
M Taiee = v L ] 1 2 !
T 7 CLF .
e v? xdx

O,

A trivial case occurs when Ca = 0. In this case p = 1 and Eq.(8) is

2
a
- n . 5
solved exactly by @n = AnJo(anx) , kn = — , where a is the nth
Taife
zero of J ( An is a normalisation constant).
0
T 1
Thus, P _ = F(0) = _ = 0.172 .
2
Taiff %

-7 -
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Putting V = (1-x2) and evaluating the Rayleigh-quotient we get,

n

o |-

F(0) = 0.167

In the general case, we consider the trial function (other choices are

possible), V =2 (1 - expl-® (x%-1)} which satisfies the boundary
c

2
a

conditions and reduces to the previgus one in the limit

Rayleigh quotient is readily evaluated in closed form.

result
TLF“ -1 ca
~— =R (—) ,
faife 2
where,

x )
R(x) = llxe-2x {(x-1)e M 1}

{r- 2xe ¢ - e-2x}

1 1 ca
For large C , = exp{——}
a c, C,2 2
R(—)
2

c =+ 0. The
a

We then obtain the

(14)

In Fig.3, we have plotted the points obtained by a fine-grid numerical

golution of Eq.(1)} and the curve given by Eq.(14) for

loglUF(Ca).




1 s

4. DISCUSSION AND CONCLUSIONS:

The above results demonstrate that for given profiles fD and fU,

the confinement time Timp is determined by two parameters. These are

2
the diffusion time-scale Tdiff =2 and the convection parameter,
D_(a)
I

a UI(a)
Ca E — . In a sense, diffusion 'always wins' no matter how large

DI(a)
Ca is. This is due to the fact that A, > 0 however large Ca is.

Clearly this is an effect of a finite domain and the condition

nI(a,t) = 0. However, if Ca > 5 say, the exponential dependence on

o] asserts itself and 1, can be very much larger than 71, __. The
a imp diff
calculations also show that an increase or decrease of Timp can be

mediated solely by the variation of Ca without Taiff (ie DI) itself

changing.

Experimental results on trace impurity transport can be simply
interpreted in terms of the above model. 1In Alcator C for example,
assu.ing DI to be anomalous (of order Xle) and UI to be the
Pfirsch-Schluter convection, we (HAAS and THYAGARAJA, 1987) have been able
to explain many features of the results obtained by Marmar et al. In
contrast, DITE (AXON et al, 1987; HAWKES et al, 1987) can operate in
apparently two regimes depending on the plasma density rate of increase.
This could be pictured as being due to the variation of Ca. Pursuing
this idea further, our phenomenological model predicted a strong
degradation of impurity confinement due to auxiliary heating. This effect
is a consequence of the general form of the scaling function F and the

decrease of Ca suggested by the physics of the model. The methods of

-9 -




this paper may be applicable more generally to plasma confinement and to

impurity confinement with sources.

The form of the scaling function F cannot be deduced without
reference to the boundary value problem. In particular, no scaling or
group theoretic analysis of Eg.(1) can ever lead to the actual form taken
by F . This example indicates that scaling arguments based on invariance
principles alone should be treated with caution. However, it is known
from standard eigenvalue theory that since the co-efficients of Eg.(8) are
analytic functions of Ca (through p ), this must also be the case for
the eigen-values. Thus, F(Ca) must be an analytic (in general
transcendental) function of Ca. This is in contrast to nonlinear
problems (eg plasma heat transport) where F(Ca) can depend

discontinuously on Ca (i.e., exhibit bifurcations). Of course, =
diff

and C themselves could change discontinuously in an experiment.
a

Figure Captions:

Fig. 1. Typical calculated variation of ﬁ(t) with time using Eq.(1)

and Eq.(5)-

Fig. 2. Calculated variation of <, /

. T.. as a function of C for a
imp’ diff a

specific choice of f and fU.

Fig. 3. Comparison between the results of numerical solutions of Eg.(1)

(shown by open circles) and the variational formula Eg.(14)

(solid curve). Log,, is plotted against Ca.

Taiff
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Fig.1 Typical calculated variation of N(t) with time using Eq.(1)

and Eq.(5).
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Fig.3 Comparison between the results of numerical solutions of
Eq.(1) (shown by open circles) and the variational formula Eq.(14)
(solid curve). Log, Tim2 is ploted against C,.
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